Thursday 16 November 2017

Viktat glidande medelvärde varians


Exponentiellt viktat glidande medelvärde kan beräknas med hjälp av formeln: ewmai (1) ewmai-1 x där ewma exponentiellt viktat glidande medelvärde, x nuvärde i arrayutjämningsfaktorn. Om Welles Wilder mjukare används bör värdet av tas som 1n annars är standardvärdet av 2 (n1). På grundval av liknande tänkande vad är formeln för exponentiellt vägd rörlig varians Vad är värdet av och hur ska det användas Fråga 6 april kl 16:45 stängt som oklart vad du frågar av excaza. legoscia. Karthik. Darwin von Corax. piotrek1543 6 apr kl 18.00 Vänligen klargör ditt specifika problem eller lägg till ytterligare information för att markera exakt vad du behöver. Som det är skrivet för närvarande är det svårt att berätta exakt vad du frågar. Se sidan Hur man frågar för hjälp för att förtydliga denna fråga. Om den här frågan kan omformuleras för att passa reglerna i hjälpcentret. Vänligen redigera frågan. Är detta en programmeringsfråga ndash EdChum Apr 6 16 at 16:48 Tja, jag är infact att göra funktioner för exponentiellt rörligt medelvärde och varians i rubin för att beräkna på en array. Så det är en programmeringsfråga. ndash Saurabh Shah Apr 6 16 at 16:53 Funktioner på vilket språk du har 2 taggade och nämna en tredje i din kommentar. Vad har du hittills försökt så är det inte en kodskrivningstjänst. ndash excaza Apr 6 16 at 16: 54Exploring Den exponentiellt vävda flytta genomsnittsvolatiliteten är den vanligaste riskmåtten, men den kommer i flera smaker. I en tidigare artikel visade vi hur man beräkna enkel historisk volatilitet. (För att läsa den här artikeln, se Använd volatilitet för att mäta framtida risk.) Vi använde Googles faktiska aktiekursdata för att beräkna den dagliga volatiliteten baserat på 30 dygns lagerdata. I den här artikeln kommer vi att förbättra den enkla volatiliteten och diskutera exponentialvägt rörligt medelvärde (EWMA). Historisk Vs. Implicit Volatilitet Först, låt oss sätta den här metriska in i lite perspektiv. Det finns två breda tillvägagångssätt: historisk och underförstådd (eller implicit) volatilitet. Det historiska tillvägagångssättet förutsätter att förflutet är en prolog som vi mäter historia i hopp om att det är förutsägbart. Implicit volatilitet, å andra sidan, ignorerar historien som den löser för volatiliteten implicerad av marknadspriser. Det hoppas att marknaden vet bäst och att marknadspriset innehåller, även om det implicit är, en konsensusuppskattning av volatiliteten. (För relaterad läsning, se volatilitetens användningar och gränser.) Om vi ​​fokuserar på bara de tre historiska tillvägagångssätten (till vänster ovan), har de två steg gemensamt: Beräkna serien av periodisk avkastning Använd ett viktningsschema För det första beräkna den periodiska avkastningen. Det är typiskt en serie av dagliga avkastningar där varje avkastning uttrycks i fortlöpande sammansatta termer. För varje dag tar vi den naturliga loggen av förhållandet mellan aktiekurserna (dvs. pris idag dividerat med pris igår, och så vidare). Detta ger en serie dagliga avkastningar, från dig till jag i-m. Beroende på hur många dagar (m dagar) vi mäter. Det får oss till det andra steget: Det är här de tre metoderna skiljer sig åt. I den föregående artikeln (Använd volatilitet för att mäta framtida risker) visade vi att enligt enkla acceptabla förenklingar är den enkla variansen genomsnittet av de kvadrerade avkastningarna: Observera att summan av varje periodisk avkastning delar upp den totala av antal dagar eller observationer (m). Så det är verkligen bara ett genomsnitt av den kvadrerade periodiska avkastningen. Sätt på ett annat sätt, varje kvadrerad retur ges lika vikt. Så om alfa (a) är en viktningsfaktor (specifikt en 1m) ser en enkel varians något ut så här: EWMA förbättras på enkel varians Svagheten i denna metod är att alla avkastningar tjänar samma vikt. Yesterdays (väldigt ny) avkastning har inte mer inflytande på variansen än förra månaden tillbaka. Detta problem fastställs med hjälp av exponentiellt viktat glidande medelvärde (EWMA), i vilken nyare avkastning har större vikt på variansen. Det exponentiellt viktade glidande medlet (EWMA) introducerar lambda. som kallas utjämningsparametern. Lambda måste vara mindre än en. Under det förhållandet, i stället för lika vikter, vägs varje kvadrerad avkastning med en multiplikator enligt följande: RiskMetrics TM, ett finansiellt riskhanteringsföretag, tenderar till exempel att använda en lambda på 0,94 eller 94. I det här fallet är den första ( senaste) kvadratiska periodiska avkastningen vägs av (1-0,94) (.94) 0 6. Nästa kvadrerade retur är helt enkelt en lambda-multipel av den tidigare vikten i detta fall 6 multiplicerat med 94 5,64. Och den tredje föregående dagens vikt är lika med (1-0,94) (0,94) 2 5,30. Det är betydelsen av exponentiell i EWMA: varje vikt är en konstant multiplikator (dvs lambda, som måste vara mindre än en) av den tidigare dagens vikt. Detta säkerställer en varians som är viktad eller förspänd mot senare data. (Mer information finns i Excel-kalkylbladet för Googles volatilitet.) Skillnaden mellan helt enkelt volatilitet och EWMA för Google visas nedan. Enkel volatilitet väger effektivt varje periodisk avkastning med 0,196 som visas i kolumn O (vi hade två års daglig aktiekursdata, det vill säga 509 dagliga avkastningar och 1509 0,196). Men märker att kolumn P tilldelar en vikt av 6, sedan 5,64, sedan 5,3 och så vidare. Det är den enda skillnaden mellan enkel varians och EWMA. Kom ihåg: När vi summerar hela serien (i kolumn Q) har vi variansen, vilket är kvadraten av standardavvikelsen. Om vi ​​vill ha volatilitet, måste vi komma ihåg att ta kvadratroten av den variansen. Vad är skillnaden i den dagliga volatiliteten mellan variansen och EWMA i Googles fall? Det är viktigt: Den enkla variansen gav oss en daglig volatilitet på 2,4 men EWMA gav en daglig volatilitet på endast 1,4 (se kalkylbladet för detaljer). Uppenbarligen avtog Googles volatilitet mer nyligen, därför kan en enkel varians vara artificiellt hög. Dagens Varians är en funktion av Pior Days Variance Du märker att vi behövde beräkna en lång serie exponentiellt sjunkande vikter. Vi brukar inte göra matematiken här, men en av EWMA: s bästa egenskaper är att hela serien reduceras bekvämt till en rekursiv formel: Rekursiv betyder att dagens variansreferenser (det vill säga är en funktion av den tidigare dagens varians). Du kan också hitta denna formel i kalkylbladet, och det ger exakt samma resultat som longhandberäkningen. Det står: Dagens varians (under EWMA) motsvarar ysterdays variance (viktad av lambda) plus ysterdays kvadrerade retur (vägd av en minus lambda). Lägg märke till hur vi bara lägger till två termer tillsammans: Vardagens viktiga varians och gårdagens viktiga, kvadrerade avkastning. Ändå är lambda vår utjämningsparameter. En högre lambda (t ex som RiskMetrics 94) indikerar långsammare sönderfall i serien - relativt sett kommer vi att ha fler datapunkter i serien och de kommer att falla av långsammare. Å andra sidan, om vi reducerar lambda, indikerar vi högre sönderfall: vikterna faller av snabbare och som ett direkt resultat av det snabba förfallet används färre datapunkter. (I kalkylbladet är lambda en ingång, så du kan experimentera med sin känslighet). Sammanfattning Volatilitet är den aktuella standardavvikelsen för ett lager och den vanligaste riskvärdet. Det är också kvadratrot av varians. Vi kan måle variationen historiskt eller implicit (underförstådd volatilitet). När man mäter historiskt är den enklaste metoden enkel varians. Men svagheten med enkel varians är alla avkastningar får samma vikt. Så vi står inför en klassisk avvägning: vi vill alltid ha mer data, men ju mer data vi har desto mer beräknas vår beräkning utspädd av avlägsna (mindre relevanta) data. Det exponentiellt viktade glidande genomsnittet (EWMA) förbättras på enkel varians genom att tilldela vikter till periodisk avkastning. Genom att göra detta kan vi båda använda en stor urvalsstorlek men ge också större vikt till nyare avkastningar. (För att se en filmhandledning om detta ämne, besök Bionic Turtle.) Artikel 50 är en förhandlings - och avvecklingsklausul i EU-fördraget som beskriver de åtgärder som ska vidtas för vilket land som helst. Beta är ett mått på volatiliteten eller systematisk risk för en säkerhet eller en portfölj i jämförelse med marknaden som helhet. En typ av skatt som tas ut på kapitalvinster som uppkommit av individer och företag. Realisationsvinster är vinsten som en investerare. En order att köpa en säkerhet till eller under ett angivet pris. En köpgränsorder tillåter näringsidkare och investerare att specificera. En IRS-regel (Internal Revenue Service Rule) som tillåter utbetalningar från ett IRA-konto i samband med straff. Regeln kräver det. Den första försäljningen av lager av ett privat företag till allmänheten. IPOs utfärdas ofta av mindre, yngre företag som söker. EWMA-metoden har en attraktiv funktion: det kräver relativt lite lagrade data. För att uppdatera vår uppskattning när som helst behöver vi bara en tidigare uppskattning av variansräntan och det senaste observationsvärdet. Ett sekundärt mål för EWMA är att spåra förändringar i volatiliteten. För små värden påverkar de senaste observationerna uppskattningen omedelbart. För värden närmare en beräknas beräkningen långsamt baserat på senaste förändringar i avkastningen för den underliggande variabeln. RiskMetrics-databasen (producerad av JP Morgan och publicerad tillgänglig) använder EWMA för uppdatering av den dagliga volatiliteten. VIKTIGT: EWMA-formuleringen antar inte en långvarig medelvarianivå. Konceptet om volatilitet betyder att omvändning inte fångas av EWMA. ARCHGARCH-modellerna är bättre lämpade för detta ändamål. Ett sekundärt mål för EWMA är att spåra förändringar i volatiliteten, så för små värden påverkar den senaste observationen uppskattningen snabbt och för värden närmare en ändras uppskattningen långsamt till de senaste förändringarna i avkastningen för den underliggande variabeln. RiskMetrics-databasen (tillverkad av JP Morgan) och offentliggjord tillgänglig 1994, använder EWMA-modellen för uppdatering av den dagliga volatilitetsberäkningen. Företaget fann att över en rad marknadsvariabler, ger detta värde en prognos om variansen som kommer närmast realiserad variansränta. De realiserade variansräntorna på en viss dag beräknades som ett lika viktat genomsnitt på de följande 25 dagarna. På samma sätt, för att beräkna det optimala värdet av lambda för vår dataset, måste vi beräkna den realiserade volatiliteten vid varje punkt. Det finns flera metoder, så välj en. Därefter beräkna summan av kvadrerade fel (SSE) mellan EWMA uppskattning och realiserad volatilitet. Slutligen minimera SSE genom att variera lambda-värdet. Låter enkelt Det är. Den största utmaningen är att komma överens om en algoritm för att beräkna realiserad volatilitet. Till exempel valde personerna på RiskMetrics de följande 25 dagarna för att beräkna realiserad variansgrad. I ditt fall kan du välja en algoritm som utnyttjar dagliga volymen, HILO andor OPEN-CLOSE-priser. Q 1: Kan vi använda EWMA för att estimera (eller prognostisera) volatiliteten mer än ett steg före EWMA-volatilitetsrepresentationen antar inte en långsiktig genomsnittlig volatilitet och sålunda, för varje prognoshorisont utöver ett steg, returnerar EWMA en konstant värde: Jag har problem med att förstå en bit av ett papper. Uppskattar väldigt mycket tips eller hjälp. Det står: En sensor registrerar Z (i) med 1 sekunds intervall och beräknar bakgrundsvärden U (i) med formel: där R är en konstantfaktor och U (0) beräknas från för-mätdata. Nu har någon aning om denna formel är känd Är det ett tvåstegs Gaussian blandningsbrus Då står det exakt så här: Variansen U (i) av dessa värden beräknas från de beräknade värdena U (i): där k är sigma faktor och T är den givna mättiden. Jag har ingen aning om hur variationen blev något sånt. Jag förstår termen T och sqrt-funktionen men den övergripande formeln, ingen aning.

No comments:

Post a Comment